Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 19, 2025
-
Spin chemistry of photogenerated spin-correlated radical pairs (SCRPs) offers a practical approach to control chemical reactions and molecular emissions using weak magnetic fields. This capability to harness magnetic field effects (MFEs) paves the way for developing SCRPs-based molecular qubits. Here, we introduce a new series of donor-chiral bridge-acceptor (D-χ-A) molecules that demonstrate significant MFEs on fluorescence intensity and lifetime in solution at room temperature – critical for quantum sensing. By precisely tuning the donor site through torsional locking, distance extension, and planarization, we achieved remarkable control over key quantum properties, including field-response range and linewidth. In the most responsive systems, emission lifetimes increased by over 200%, and total emission intensity was modulated by up to 30%. This level of tunability, and rational design principle of optically addressable molecular qubits, represents a major leap toward functional synthetic molecular qubits, advancing the field of molecular quantum technologies.more » « less
An official website of the United States government
